If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2+30t-72=0
a = 9; b = 30; c = -72;
Δ = b2-4ac
Δ = 302-4·9·(-72)
Δ = 3492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3492}=\sqrt{36*97}=\sqrt{36}*\sqrt{97}=6\sqrt{97}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{97}}{2*9}=\frac{-30-6\sqrt{97}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{97}}{2*9}=\frac{-30+6\sqrt{97}}{18} $
| 4x/8x^2=0 | | .50(40)=0.20(40−m | | (4x-5)^(1/3)=-5 | | -4/3a=12 | | 2c-3+19=23c-47 | | .50(40)=0.20(40−m | | .50(40)=0.20(40−m | | -6x+10-2x=34 | | (x-9)^2=81 | | 15.42=2s+3.14 | | 15=6x+15 | | 4+x/10=6 | | 7n-4=39 | | 2(y-6)=6y+14 | | 0=11z+4(15z) | | (4x-5)^1/3=-5 | | 1/8y+3=-18 | | -9(4-x)=100 | | 3y+4=12+y | | (4×(x+4)÷5)=((x-1)÷3) | | m=3-18-4 | | -4x-29(x+3)=-4(8x+7) | | 2(x-6)+9-5x=9 | | 4x+5=9x-35 | | 6y+4-(3y)=-5+y+17 | | 3-11a=2-(19+a) | | (4(x+4))÷5=(x-1)÷3 | | 3(z-3)=7z+3 | | -2(w-4)=2(5w-2) | | 12x+x-13=65 | | t/3+-2=-5 | | 3-7x=3-x |